Interaction of Boron-Nitrogen Substitued Graphene Nanoribbon with Nucleobases: The Idea of Biosensor

نویسندگان

  • Barnali Bhattacharya
  • Ngangbam Bedamani Singh
  • Utpal Sarkar
چکیده

In this paper we have designed a biosensor device built from B-N substituted graphene nanoribbon within density functional based tight-binding (DFTB) framework. We have investigated the interaction of the nucleobases adenine (A), Guanine (G), Cytosine (C) and Thymine (T) with device. Our calculation suggests that all the nucleobases have different interaction strength when they interact with device and shows that guanine has stronger interaction with device than other nucleobases. It reveals that the absorption energy shows the hierarchy: G > C > T > A. Our results also demonstrate the transport properties of the device and how the transport properties change due to the absorption of nucleobases on the device.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Fast DNA sequencing with a graphene-based nanochannel device.

Devices in which a single strand of DNA is threaded through a nanopore could be used to efficiently sequence DNA. However, various issues will have to be resolved to make this approach practical, including controlling the DNA translocation rate, suppressing stochastic nucleobase motions, and resolving the signal overlap between different nucleobases. Here, we demonstrate theoretically the feasi...

متن کامل

Rectification in Graphene Self-Switching Nanodiode Using Side Gates Doping

The electrical properties and rectification behavior of the graphene self-switching diodes by side gates doping with nitrogen and boron atoms were investigated using density functional tight-binding method. The devices gates doping changes the electrical conductivity of the side gates and the semiconductor channel nanoribbons. As a result, the threshold voltage value under the forward bias is s...

متن کامل

Geometric and Electronic Properties of Edge-decorated Graphene Nanoribbons

Edge-decorated graphene nanoribbons are investigated with the density functional theory; they reveal three stable geometric structures. The first type is a tubular structure formed by the covalent bonds of decorating boron or nitrogen atoms. The second one consists of curved nanoribbons created by the dipole-dipole interactions between two edges when decorated with Be, Mg, or Al atoms. The fina...

متن کامل

Detection of Nucleic Acids with Graphene Nanopores : Ab Ini - tio

Submitted for the MAR10 Meeting of The American Physical Society Detection of Nucleic Acids with Graphene Nanopores: Ab Initio Characterization of a Novel Sequencing Device1 TAMMIE NELSON, BO ZHANG, OLEG PREZHDO, University of Washington — We report an ab initio study of the interaction of two nucleobases, cytosine and adenine, with a novel graphene nanopore device for detecting the base sequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013